

The Chinese University of Hong Kong, Shenzhen

Summary

The technique of model averaging (MA) has not been considered for the important matrix factorization (MF) model under the scenario of federated learning (FL).

- Propose a new MA based algorithm, named Fed-MAvg, by judiciously combining the alternating minimization technique and MA.
- Local GD with diminishing steps and partial client communication can greatly reduce the communication cost, even under non-i.i.d. data.

Federated Matrix Factorization Model

The data samples are partitioned as X = $[\boldsymbol{X}_1, \boldsymbol{X}_2, \dots, \boldsymbol{X}_P]$ and respectively owned by P distributed clients. Each client p owns non-overlapping data $oldsymbol{X}_p \in \mathbb{R}^{M imes N_p}$, where N_p is the number of samples of client p and $\sum_{p=1}^{P} N_p = N$.

$$\min_{\substack{\boldsymbol{W}, \ \boldsymbol{H}_{p}, \\ p=1,...,P}} F(\boldsymbol{W}, \boldsymbol{H}) \triangleq \sum_{p=1}^{P} \omega_{p} F_{p}(\boldsymbol{W}, \boldsymbol{H}_{p}) \quad (1a)$$

s.t.
$$\boldsymbol{W} \in \mathcal{W}, \boldsymbol{H}_p \in \mathcal{H}_p, \forall p \in \mathcal{P},$$
 (1b)

where $F_p(\boldsymbol{W}, \boldsymbol{H}_p) = \frac{1}{N_n} \Phi_p(\boldsymbol{X}_p, \boldsymbol{W}\boldsymbol{H}_p), \ p \in \mathcal{P}.$

- $\Phi_p(\boldsymbol{X}_p, \boldsymbol{W}\boldsymbol{H}_p)$ measures the quality of the approximation $oldsymbol{X}_p pprox oldsymbol{W} oldsymbol{H}_p$, e.g. $rac{1}{N_n} \|oldsymbol{X}_p - oldsymbol{W} oldsymbol{H}_p\|_F^2$.
- P could be large, N_p , $p = 1, \ldots, P$, could be unbalanced, and $X_p, p \in \mathcal{P}$ could be non-i.i.d.
- Problem (1) is challenging to solve since it is nonconvex and non-smooth, and involves two blocks of variables W and H.

DEMYSTIFYING MODEL AVERAGING FOR COMMUNICATION-EFFICIENT FEDERATED MATRIX FACTORIZATION

Shuai Wang^{1,2}, Richard Cornelius Suwandi², Tsung-Hui Chang^{1,2} Shenzhen Research Institute of Big Data, 2 The Chinese Univ. of Hong Kong, Shenzhen

Algorithm Development	Con
• Alternating Minimization: Given W^{s-1} , each client p performs	Βοι
$\boldsymbol{H}_{p}^{s} = \arg\min_{\boldsymbol{H}_{p}\in\mathcal{H}_{p}} F_{p}(\boldsymbol{W}^{s-1},\boldsymbol{H}_{p}), \qquad (2a)$	Vii
$\boldsymbol{W}_{p}^{s} = \arg\min_{\boldsymbol{W}} F_{p}(\boldsymbol{W}, \boldsymbol{H}_{p}^{s}).$ (2b)	

The server does $W^s = \mathcal{P}_{\mathcal{W}}(\sum_{p=1}^{P} \omega_p W_p^s).$

• Local GD with Diminishing Q_2 :

- -(2a) via $Q_1 \geq 1$ consecutive steps of PGD with respect to H_p .
- -(2b) via $Q_2^s \ge 1 \left(Q_2^s = \lfloor \frac{\hat{Q}}{s} \rfloor + 1 \right)$ consecutive steps of GD with respect to $oldsymbol{W}_p.$

• Partial Client Communication (PCC):

- For each round, m clients in \mathcal{A}^s are selected by the server.
- All clients perform updating but only the clients in \mathcal{A}^s upload their models to the server for averaging.

Proposed FedMAvg Method

Algorithm 1 Proposed FedMAvg algorithm

Input: initial values of $\mathbf{W}_1^0 = \cdots = \mathbf{W}_P^0$ at the server side, initial values of $\{\mathbf{H}_p^0\}_{p=1}^P$ at the clients, $\mathcal{A}^0 = \{1, \dots, P\}$ and \hat{Q} . for round s = 1 to S do Server side: Compute

$$\mathbf{W}^{s} = \mathcal{P}_{\mathcal{W}}\left(\frac{1}{m}\sum_{p\in\mathcal{A}^{s-1}}\mathbf{W}_{p}^{s-1}\right),$$

and select a set of clients \mathcal{A}^s (with size $|\mathcal{A}^s| = m$) by sampling with replacement according to probabilities $\{\omega_1, \ldots, \omega_P\}$, and broadcast \mathbf{W}^{s} to all clients. **Client side:** for client p = 1 to P in parallel do Set $\mathbf{H}_p^{s,0} = \mathbf{H}_p^{s-1}$ and $\mathbf{W}_p^{s,0} = \mathbf{W}^s$. for epoch t = 1 to Q_1 do $\mathbf{H}_{p}^{s,t} = \mathcal{P}_{\mathcal{H}_{p}} \left(\mathbf{H}_{p}^{s,t-1} - \frac{\nabla_{H_{p}} F_{p}(\mathbf{W}_{p}^{s,t-1},\mathbf{H}_{p}^{s,t-1}) \right)$ $\mathbf{W}_{p}^{s,t} = \mathbf{W}_{p}^{s,t-1}.$ end for for epoch $t = Q_1 + 1$ to $Q^s = Q_1 + Q_2^s$ do $\mathbf{W}_{p}^{s,t} = \mathbf{W}_{p}^{s,t-1} - \frac{\nabla_{W}F_{p}(\mathbf{W}_{p}^{s,t-1},\mathbf{H}_{p}^{s,t-1})}{\mathbf{V}_{p}}$ $\mathbf{H}_{p}^{s,t} = \mathbf{H}_{p}^{s,t-1}.$ end for Denote $\mathbf{W}_{p}^{s} = \mathbf{W}_{p}^{s,Q^{s}}$ and $\mathbf{H}_{p}^{s} = \mathbf{H}_{p}^{s,Q^{s}}$. if client $p \in \mathcal{A}^s$ then Upload \mathbf{W}_{n}^{s} to the server. end if end for end for

(3)

(4)

nvergence Analysis

unds:

 $\|\nabla_W F_p(\boldsymbol{W}, \boldsymbol{H}_p) - \nabla_W F(\boldsymbol{W}, \boldsymbol{H})\|_F^2 \leq \zeta^2,$ $\|\nabla_W F(\boldsymbol{W}, \boldsymbol{H})\|_F^2 \le \phi^2,$

irtual Sequences: $\forall t = 1, \ldots, Q$, $\widetilde{\boldsymbol{W}}^{s,t} = \mathcal{P}_{\mathcal{W}}\left(\frac{1}{m}\sum_{\boldsymbol{x}\in A^s} \boldsymbol{W}_p^{s,t}\right), \ \widetilde{\boldsymbol{W}}^{s,0} = \boldsymbol{W}^s,$ (5)

Proximal Gradient:

$$G_{H}^{s,t} \triangleq \sum_{p=1} \omega_{p} (c_{p}^{s})^{2} \left\| \boldsymbol{H}_{p}^{s,t} - \mathcal{P}_{\mathcal{H}_{p}} \left(\boldsymbol{H}_{p}^{s,t} - (\boldsymbol{H}_{p}^{s,t}) \right) \right\|_{F}^{2}, \forall t \in \mathcal{Q}_{1}, \quad (\boldsymbol{e}_{p}^{s,t}) = (c_{p}^{s})^{-1} \nabla_{H_{p}} F_{p} (\widetilde{\boldsymbol{W}}^{s,t}, \boldsymbol{H}_{p}^{s,t}) \right) \|_{F}^{2}, \forall t \in \mathcal{Q}_{1}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{2} \| \widetilde{\boldsymbol{W}}^{s,t} - \mathcal{P}_{\mathcal{W}} (\widetilde{\boldsymbol{W}}^{s,t} - (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}}^{s,t}, \boldsymbol{H}^{s,t})) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}}^{s,t}, \boldsymbol{H}^{s,t}) \right) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}^{s,t}, \boldsymbol{H}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) = (d^{s})^{-1} \nabla_{W} F(\widetilde{\boldsymbol{W}^{s,t}) \|_{F}^{2}, \forall t \in \mathcal{Q}_{2}^{s}, \quad (\boldsymbol{e}_{p}^{s,t}) \|_{F}^{2}, \forall t \in$$

Theorem 1 Let $Q_2^s = \lfloor \frac{\hat{Q}}{s} \rfloor + 1$, and let T be the total number of iterations. Moreover, let c_p^s = $rac{\gamma_1}{2}L^s_{H_n}$, d^s = $\gamma_2L^s_W$, where γ_1 > 1 and γ_2 ≥ $Q_2^1 \sqrt{2(7+4\overline{L}_W^2/\underline{L}_W^2)}$. Then, under Assumptions, the sequence $\{(\mathbf{W}^{s,t}, \mathbf{H}^{s,t})\}$ satisfies

$$\frac{1}{T} \left[\sum_{s=1}^{S} \sum_{t=1}^{Q_1} \mathbb{E}[G_H^{s,t-1}] + \sum_{s=1}^{S} \sum_{t=Q_1+1}^{Q^s} \mathbb{E}[G_W^{s,t-1}] \right] \\
\leq \frac{D}{T} \left(F(\widetilde{W}^{1,0}, H^{1,0}) - \underline{F} \right) + \left(\frac{8D\zeta^2}{m\gamma_2 \underline{L}_W} + \frac{96\zeta^2}{m} \right) \\
+ \frac{2D(1+8/m)(\frac{11}{3}\zeta^2 + \phi^2) \sum_{s=1}^{S} C_1^s}{T\gamma_2^3 \underline{L}_W} \\
+ \frac{(\frac{11}{3}\zeta^2 + \phi^2) \sum_{s=1}^{S} C_2^s}{T\gamma_2^2} + \frac{3(\zeta^2 + \phi^2) \sum_{s=1}^{S} C_1^s}{2T}, \quad (8)$$

where $D \triangleq \frac{\gamma_1^2 \overline{L}_H}{2(\gamma_1 - 1)} + \frac{6(\gamma_2^2 + 1)\overline{L}_W^2}{(\gamma_2 - 1)L_W}$, $C_1^s \triangleq Q_2^s (Q_2^s - 1)(2Q_2^s - 1),$ and $C_2^s \triangleq 6(3Q_2^s(Q_2^s - 1)/2 + 4 + 32/m)C_1^s$.

Numerical Results II

Round s

(a)

Application to Item Recommendation: Recommendation performance: FedMAvg, m = 10-FedMAvg, m = 50*****FedMAvg, m = 100FedMAvg, m = 610-SFMF \rightarrow FedMAvg, m = 10-FedMAvg, m = 50- FedMAvg, m = 100FedMAvg, m = 610SFMF _ _ _ _ **x**_ _ _ _ **x**_ _ _ _ **x**_ _ _ _ **x**_ _ _ **_**

(b)

Communication cost

References

[1] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, "Scalable k-means++," in Proc. VLDB 2012, Istanbul, Turkey, Aug. 27-31 2012, pp. 622-633. [2] M.-F. Balcan, S. Ehrlich, and Y. Liang, "Distributed k-means and kmedian clustering on general topologies," in Proc. NeuIPS 2013, Lake Tahoe, USA, Dec. 5-10 2013, pp. 1995–2003. [3] J. Chen, E. S. Azer, and Q. Zhang, "A practical algorithm for distributed clustering and outlier detection," in Proc. NeuIPS 2018, Montreal, Quebec, Canada, Dec. 2-8 2018, pp. 2248-2256. [4] D. Chai, L. Wang, K. Chen, and Q. Yang, "Secure federated matrix factorization," IEEE Intelligent Systems, vol. 1, No. 1, pp. 1–8, Aug. 2020.

Numerical Results I

