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Motivation

• Kernel design for Gaussian processes (GPs) along with the associated
hyper-parameter optimization is a challenging problem

• The computational complexity for training the model hyper-parameters can be
very demanding and even prohibitive for large data sets

• Large amount of labeled training data are usually aggregated from a large
number of local agents or mobile devices, which may cause severe data privacy
issues
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Contributions

• We propose a novel grid spectral mixture (GSM) kernel [1, 2] design for GPs
that can automatically fit multidimensional data

• Two efficient distributed learning algorithms are proposed to alleviate the
computational complexity owing to the curse of dimensionality in the kernel
hyper-parameter optimization

• The proposed algorithms can help with preserving data privacy during the
learning process
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Gaussian Process (GP) Regression

• We consider the following GP regression model

y = f(x) + e, e ∼ N (0, σ2
e) (1)

where f(x) ∼ GP(µ(x), k(x,x′;θh)) is a real-valued, scalar Gaussian process
with mean function µ(x) and covariance function k(x,x′;θh)

• The set of unknown hyper-parameters that needs to be tuned is denoted by
θ ≜ [θT

h , σ
2
e ]

T
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Grid Spectral Mixture (GSM) Kernel

• The basic idea behind the GSM kernel is to undertake an approximation of the
underlying stationary kernel using the fact that any stationary kernel and its
spectral density are Fourier duals [3]

Theorem
If the spectral density exists, then the stationary kernel function, k(τ ), and its
spectral density, S(ω), are Fourier duals of each other

k(τ ) =

∫
Rdx

S(ω) exp
[
j2πτ⊤ω

]
dω, (2a)

S(ω) =

∫
Rdx

k(τ ) exp
[
−j2πτ⊤ω

]
dτ . (2b)
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Grid Spectral Mixture (GSM) Kernel

...

spectral density

Gaussian density

1-D case 2-D case

... ...

spectral density

......

Gaussian density

Figure: Basis kernel spectral density space under different input dimensions.
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GSM Kernel: One-Dimensional Input

• The GSM kernel approximates the spectral density of the underlying kernel
function in the frequency domain by a Gaussian mixture,

S(ω) =
1

2

Q∑
q=1

θq [N (ω | µq, vq) +N (ω | −µq, vq)] , (3)

where {µq}Qq=1 and {vq}Qq=1 are fixed to preselected grid points and {θq}Qq=1

are weights to be optimized
• Taking the inverse Fourier transform of S(ω), yields the original GSM kernel as

k(τ) =

Q∑
q=1

θq cos(2πτµq) exp
[
−2π2τ2vq

]︸ ︷︷ ︸
kq(τ)

, (4)

where τ = |x− x′| ∈ R
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Hyper-parameter Optimization

• Learning the model hyper-parameters θ in GPR model typically resorts to the
type-II maximum likelihood,

θ̂ = argmin
θ

y⊤ [C(θ)]−1 y + log det [C(θ)]︸ ︷︷ ︸
≜l(θ)

+ constant, (5)

where C(θ) ≜ KXX + σ2
eIn

• The optimization problem in Eq. (5) is a well-known difference-of-convex
programming (DCP) problem [4], where g(θ) ≜ y⊤ [C(θ)]−1 y and
h(θ) ≜ − log det [C(θ)] are convex functions w.r.t. θ

• This DCP problem can be efficiently solved using the successive convex
approximation (SCA) algorithm [5]
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Vanilla SCA

• The vanilla SCA algorithm generates a sequence of feasible points θt, t ∈ N by
solving

θt+1 = argmin
θ

l̃(θ,θt) (6)

where l̃(θ,θt) : Θ×Θ 7→ R is called the surrogate function

Assumption

The surrogate function l̃(θ,θt) : Θ×Θ 7→ R satisfies the following conditions:

1 l̃(θ,θt) is strongly convex on space Θ;

2 l̃(θ,θt) is differentiable with ∇θ l̃(θ,θ
t)=∇θl(θ)

∣∣
θ=θt
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Vanilla SCA

• By performing the first-order Taylor expansion, we can make the convex
function h(θ) affine and construct l̃(θ,θt):

l̃(θ,θt) = g(θ)− h(θt)−∇θh(θ
t)⊤(θ − θt) (7)

• The problem in Eq. (6) becomes a convex optimization problem, and can be
solved effectively by using the commercial solver MOSEK [6,2]

• The computational complexity in each iteration scales as O(Qn3), where n is
the number of training samples and Q is the number of basis kernels
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Problem Statement
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GSM Kernel: Multidimensional Input

• We can similarly use a Gaussian mixture to approximate the spectral density of
the underlying kernel function,

S(ω) =

Q∑
q=1

θq[N (ω;µq,Vq) +N (ω;−µq,Vq)], (8)

where µq=
[
µ
(1)
q , ..., µ

(dx)
q

]⊤
and Vq = diag

(
v
(1)
q , ..., v

(dx)
q

)
• Taking the inverse Fourier transform of S(ω) yields the GSM kernel with
multidimensional input as

k(τ ) =

Q∑
q=1

θq cos
(
2πτ⊤µq

) dx∏
p=1

exp
{
−2π2τ2p v

(p)
q

}
(9)
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Grid Generation Strategy

• By assuming that each input dimension is independent, we empirically sample
Q′ frequencies, either uniformly or randomly, from the frequency region

[0, µ
(p)
u ) for the p-th dimension and obtain [µ

(p)
1 , . . . , µ

(p)
Q′ ]

• The highest frequency µ
(p)
u is set to be equal to 1/2 over the minimum input

spacing between two adjacent training data points in the dimension p

• Using the sampled frequencies, we can generate Q = Q′dx grid points in the
Rdx space

• Finally, using the generated grid points, we can construct Q isotropic
multivariate Gaussian densities to approximate the underlying spectral density
in the frequency domain
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Distributed SCA (DSCA)

• To alleviate the computational burden owing to the curse of dimensionality, we
leverage a multicore computing environment to optimize θ in parallel

• The feasible set Θ in the GSM kernel admits a Cartesian product structure,
i.e., Θ = Θ1 ×Θ2 × . . .×Θs with Θi ⊆ RQ/s

• We can partition the optimization variable into s blocks, θ = [θ1,θ2, . . . ,θs]
⊤,

and construct a surrogate function that is additively separable in the blocks:

l̃(θ,θt) =

s∑
i=1

l̃i(θi,θ
t). (10)

where

l̃i(θi,θ
t)=g(θi,θ

t
−i)− h(θt)−∇θih(θ

t)⊤(θi − θt
i), (11)
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Distributed SCA (DSCA)

...

Figure: Distributed SCA (DSCA) for linear multiple kernel learning.

• The computational complexity of each computing core scales as O(Qs n
3),

where n is the number of training samples
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Doubly Distributed SCA (D2SCA)

• DSCA is impractical for big data and prone to data privacy issues

• We propose a doubly distributed algorithm based on the alternating direction
method of multipliers (ADMM) [7,8] which enables N multicore agents to
collaboratively learn the global hyper-parameters while preserving the data
privacy of the local agents

• Each agent optimizes the hyper-parameters using its local data and then
exchanges the hyper-parameters with a central agent to reach a global
consensus
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Doubly Distributed SCA (D2SCA)
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Figure: Doubly Distributed SCA (D2SCA) for linear multiple kernel learning.

• The overall computational complexity of the D2SCA algorithm scales as

O(Qn3

sN3 )
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Setup

• We investigate the training and prediction performance of the proposed
learning algorithms, DSCA and D2SCA, on various data sets

• We have selected 8 one-dimensional input data sets and 4 multidimensional
input data sets as our benchmark

• We compare the proposed GSM kernel-based GP (GSMGP) with the SM
kernel-based GP (SMGP) proposed by Wilson et al. in [9] and the
squared-exponential kernel-based GP (SEGP) in terms of the prediction mean
squared error (MSE)
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1-D Case: Prediction Performance

Data Set
GSMGP
DSCA

GSMGP
D2SCA

SMGP SEGP LSTM ARIMA

ECG 1.1E-02 1.2E-02 1.9E-02 1.6E-01 1.6E-01 1.8E-01

CO2 9.2E-01 1.4E+00 1.1E+00 1.5E+03 2.9E+02 4.9E+00

Electricity 4.3E+03 3.6E+03 7.5E+03 8.3E+03 8.0E+03 1.2E+04

Employment 5.4E+01 7.0E+01 7.0E+02 8.4E+03 1.9E+03 3.9E+02

Hotel 4.2E+02 1.5E+03 2.8E+03 5.6E+04 5.0E+04 1.7E+04

Passenger 6.9E+01 1.1E+02 1.6E+02 8.8E+02 7.0E+02 4.5E+03

Clay 8.5E+01 2.4E+02 3.3E+02 1.5E+03 3.6E+02 3.3E+02

Unemployment 2.0E+03 3.1E+03 1.4E+04 5.6E+05 1.7E+05 1.5E+04

Table: Performance comparison between the proposed GSMGP and its competitors in terms of the
prediction MSE.
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1-D Case: Prediction Performance
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Figure: Training and prediction performance of the GSMGP with σ = 0.001 and Q = 500
uniformly generated grids. The optimal weights are solved via the distributed SCA (DSCA)
algorithm.
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1-D Case: Training Performance
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Figure: Estimated weights and frequencies generated by the distributed SCA (DSCA) algorithm
for selected data sets.
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M-D Case: Prediction Performance

Data Set
GSMGP
DSCA

GSMGP
D2SCA

SMGP SEGP LSTM

ALE 2.4E-02 2.3E-02 3.8E-01 3.7E-02 3.4E-02

CCCP 1.9E+01 1.6E+01 2.1E+05 1.7E+01 2.8E+02

Airfoil 1.7E+01 5.2E+01 6.9E+01 7.7E+01 7.3E+01

Concrete 6.7E+01 4.0E+01 1.7E+03 1.3E+02 1.4E+02

Table: Performance comparison between the proposed GSMGP and its competitors, SMGP and
SEGP, in terms of the prediction MSE.
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M-D Case: Training Performance

Data Set
GSMGP-DSCA

# of Iter.
GSMGP-D2SCA

# of Iter.
SMGP

# of Iter.
SEGP

# of Iter.

ALE 4 3 63 122

CCCP 5 7 82 141

Airfoil 7 5 500 137

Concrete 3 3 500 154

1 The number of iterations in GSMGP-D2SCA is the number of global
iterations.

Table: Performance comparison between the proposed GSMGP and its competitors, SMGP and
SEGP, in terms of the total number of iterations.
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Conclusion

• We propose an extension of the grid spectral mixture (GSM) kernel for
multidimensional input

• Two efficient distributed learning algorithms, namely DSCA and D2SCA, are
proposed to alleviate the computational complexity owing to the curse of
dimensionality in the kernel hyper-parameter optimization

• The proposed algorithms can learn the global hyper-parameters with lower
computational complexity and preserve data privacy during the learning process

• Experimental results verify that the proposed GSM kernel and the associated
learning algorithms are superior in terms of training and prediction
performance compared to their competitors
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